zk-and-rx

From Documentation
Documentationobertwenzel
obertwenzel

Author
Robert Wenzel, Engineer, Potix Corporation
Date
September, 2017
Version
ZK 8.5

Introduction

Assume you are working for a project on a Robot Farm (I think there could be worse projects). Unfortunately those Robots are a bit moody and unreliable sometimes - so of course there needs to be a supervisor sitting in his/her office chair and watching a screen to follow all the Robots movements.

Since human supervisors are prone to errors too there should be multiple employees observing the same Robots simultaneously.

Based on their current assignment and in order to preserve bandwidths it must be possible to track certain Robots near real-time (filtered by mood or position) without completely losing track of the overall situation, i.e. highlighted Robots have a faster update rate than others (100 ms vs. 1 sec).

Employees may come and go as they like and connect/disconnect to the live data feed on demand.

However the Robots are constantly sending data at high frequency to your back-end process. Your challenge is to connect the UI to the stream of information reducing it based on the filter criteria and throttle the sheer amount of data to something the human eye and your network connection can handle.

The Outset

For the Robot event stream you choose rxjava LINK ME and ZK for the frontend (disclaimer: I am currently working for ZK) RxJava's reactive streams fit well into ZK's MVVM design pattern, making an interesting combination worth talking about.

Here the technologies used:

The Backend (RX Observable)

The stream of TrackEvents is produced by a single hot Observable LINK ME initialized at first subscription.

  • constantly streams TrackEvent at 10ms intervals
  • unreliability simulated by randomly updating~30% of the robots with an additional 2% chance to change the mood
  • allows multiple consumers (using observable.publish() / observable.connect() LINK ME)

Of course this Observable is unaware of the front end and will just stream the events once started - no matter what. For each new subscriber it will initially send TrackEvents for all Robots followed by the random stream of events every subscriber shares.

LINK FULL SOURCE

public class RobotBackend {
	private static int NUM_ROBOTS = 20;
	...

	/**
	 * called once to start the stream of events
	 */
	public void start() {
		allRobots = LongStream.range(0L, NUM_ROBOTS)
				.mapToObj(index -> new Robot(100 + index, new Position(0, 0), Robot.Mood.NEUTRAL))
				.collect(Collectors.toConcurrentMap(Robot::getId, robot -> robot));

		Observable<TrackEvent<Robot>> obs = Observable.create(this::backGroundThread);
		hotRobotObservable = obs.publish();
		disposable = hotRobotObservable.connect();
	}

	/**
	 * called by each subscriber to connect to the same event stream
	 * @return Observable of {@link TrackEvent}
	 */
	public Observable<TrackEvent<Robot>> trackRobots() {
		Stream<TrackEvent<Robot>> currentRobots = allRobots.values().stream()
				.map(robot -> new TrackEvent<>(TrackEvent.Name.ON_ENTER, robot, robot));
		//prepend initial state for all robots to the hot stream of updates
		return hotRobotObservable
				.startWith(currentRobots::iterator);
	}

	... some logic to create the thread and random positions below ...

The UI (ZK MVVM application)

A simple UI is implemented in ZK using a zul template and a java ViewModel class. UI specific calculated properties such as styleClasses (derived from mood and realTime status) are added by wrapping the domain class Robot into a UiRobot.

LINK FULL SOURCE

<?style src="style.css"?>
<zk xmlns:w="client">
	<div id="robotFarm" viewModel="@id('vm') @init('zk.rx.demo.vm.RobotFarmViewModel')">
		...

		<div sclass="trackingArea">
			<if test="@load(vm.centerRegionTracking)">
				<div sclass="centerRegionArea"/>
			</if>
			<forEach items="@init(vm.trackedRobots)" var="mapEntry">
				<apply uiRobot="@init(mapEntry.value)">
					<div sclass="@load(uiRobot.styleClasses)"
						 left="@load((uiRobot.robot.position.x += '%'))"
						 top="@load((uiRobot.robot.position.y += '%'))">
					</div>
				</apply>
			</forEach>
		</div>

		<div sclass="controlArea" align="center">
			Real-time:
			<combobox readonly="true" model="@init(vm.filterNamesModel)" onSelect="@command('selectFilter')" width="120px"/>
			<button iconSclass="@load(vm.running ? 'z-icon-stop' : 'z-icon-play')" label="@load(vm.running ? 'Stop' : 'Start')"
					onClick="@command('toggleRunning')"/>
			<button iconSclass="z-icon-retweet" label="Ping Server" onClick="@command('testServerResponse')"/>
		</div>
	</div>
</zk>

Line 10-15: render Robots as divs with dynamic styles and position reacting to model changes

I'll not go too deep into ZK specifics now. Updating the UI (i.e. responding to data changes in the View Model) can be triggered several ways: A simple one is annotating a command handler method with @NotifyChange ...

	@Command
	@NotifyChange("centerRegionTracking")
	public void selectFilter() {
		currentFilter = availableFilters.get(filterNamesModel.getSelection().iterator().next());
		if(isRunning()) {
			start();
		}
	}

... which will then update the corresponding data binding (@load(vm.centerRegionTracking)) in the zul file:

	<if test="@load(vm.centerRegionTracking)">
		<div sclass="centerRegionArea"/>
	</if>

An imperative alternative is to call BindUtils.postNotifyChange(...)LINK JAVADOCS in order to trigger a @load binding.

For the interested here the complete MVVM documentation LINK ME.

The Challenge ("Magic in the Middle")

Knowing how to update the UI is mostly a technicality. The trickier decisions are: when and how often to notify the UI in order to re-render parts, because those will have direct impact on the performance and responsiveness of your application.

Also since the server and client side are connected via network there's a latency which needs to be dealt with. In ZK 8.5 this will be improved by introducing web sockets LINK ME for client-server communication.

The How - Updating the UI

As the observable emits TrackEvent<Robot> objects the basic way to process those might look like this:

backend.trackRobots()
    .subscribe(event -> updateUi(event), this::handleError);

However this would not work just that: A technical requirement is to obtain a "lock" before UI elements in page (called "Desktop" in ZK) can be updated e.g. via change notification - mentioned above. For user triggered events such as mouse or keyboard events this happens automatically - background threads have to obtain a lock on demand. Especially if only parts of the background thread need to update the UI, the remaining code can run in parallel without blocking user interactions. Getting the "lock" (activating the desktop) looks as simple as that (almost like a DB transaction):

try {
  Executions.activate(desktop); //obtains the lock
  //do some any updates here
} finally {
  Executions.deactivate(desktop); //will release the lock and flush the changes to the UI and out to the browser
}

However this looks like tedious boilerplate code and forgetting to "deactivate" may lead to infinite dead locks for that particular "desktop". Better we wrap that in some way so it can be reused and integrated into the observable chain.

Obviously activate/deactivate don't affect the data of the stream so that the RX side effect operators (doOn... ) LINK ME sound like a good match:

backend.trackRobots()
    .observeOn(Schedulers.io())
    .doOnNext(event -> Executions.activate(desktop)) //potentially blocking that's why Schedulers.io()
    .doAfterNext(event -> Executions.deactivate(desktop))
    .doOnTerminate(() -> Executions.deactivate(desktop));
    .subscribe(event -> updateUi(event), this::handleError);

Again adding those 4 lines before the update might be tedious and still error prone (e.g. using the wrong Scheduler might lead to dead lock as well as forgetting any of the lines). To make this more manageable we can wrap it into a composite operator extending from ObservableTransformer<T, T> LINK ME collapsing those 4 lines into a single readable line.

backend.trackRobots()
    .compose(ZkObservable.activated()) //means perform the downstream with an activated desktop, and deactivate after each event
    .subscribe(event -> updateUi(event), this::handleError);

Looks much better ... phew!

Filtering

Still there's only so much a connection and the human eye can handle, which makes it reasonable to think about filtering / throttling / buffering / batching the event stream before updating the UI.

Throttling/Buffering

Optimizing the Buffer

  • filter the events (by selectable criteria)
  • throttle UI updates (reducing the network load)
    • buffer updates (100ms / 1000ms)
    • avoid redundant updates
    • batch update (in a single ZK execution)

Summary

Example Sources

The code examples are available on github in the zk-rxdemo repository

Running the Example

Clone the repo

   git clone git@github.com:zkoss-demo/zk-rxdemo.git

The example war file can be built using the gradle-wrapper (on windows simply omit the prefix './'):

   ./gradlew war

Execute using jetty-runner (fastest):

   ./gradlew startJettyRunner

Execute using gretty:

   ./gradlew appRun


Then access the example http://localhost:8080/zk-rxdemo CHECK LINK


Comments



Copyright © Potix Corporation. This article is licensed under GNU Free Documentation License.